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ABSTRACT

Prior studies disagree regarding the effectiveness of financial literacy programs, especially those offered in the workplace. 
To explain such measurement differences in evaluation and outcomes, we employ a stochastic life cycle model with 
endogenous financial knowledge accumulation to investigate how financial education programs optimally shape key 
economic outcomes. This approach permits us to measure how such programs shape wealth accumulation, financial 
knowledge, and participation in sophisticated assets (e.g. stocks) across heterogeneous consumers. We then apply 
conventional program evaluation econometric techniques to simulated data, distinguishing selection and treatment 
effects. We show that the more effective programs provide follow-up in order to sustain the knowledge acquired by 
employees via the program; in such an instance, financial education delivered to employees around the age of 40 can raise 
savings at retirement by close to 10%. By contrast, one-time education programs do produce short-term but few long-term 
effects. We also measure how accounting for selection affects estimates of program effectiveness on those who participate. 
Comparisons of participants and non participants can be misleading, even using a difference-in-difference strategy. 
Random program assignment is needed to evaluate program effects on those who participate.
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1 INTRODUCTION

Employees and their families are increasingly responsible for securing their own financial well-being. Prior to the 1980s, 
U.S. workers relied mainly on Social Security and employer sponsored defined benefit (DB) pension plans for their 
retirement security. Today, by contrast, Baby Boomers are increasingly relying on defined contribution (DC) plans and 
Individual Retirement Accounts (IRAs) to finance their golden years. The transition to a DC retirement saving model 
has the advantage of permitting more worker flexibility and labor mobility than in the past, yet it imposes a greater 
responsibility on individuals to save, invest, and decumulate their retirement wealth sensibly. At the same time, financial 
markets have become more complex, offering products that are often difficult to understand. Whether individuals—in 
particular, older individuals—are equipped to deal with this new financial landscape is an important question that has 
implications for families, society, and policy makers.

Traditional economic models of saving and consumption decisions implicitly assume that people are able to formulate 
and execute saving and decumulation plans, all of which require expertise in dealing with financial markets, and that 
they have the capacity to undertake complex economic calculations. Yet, as Lusardi and Mitchell have reported (2008, 
2009, 2011a,b), few people possess the financial knowledge adequate to make and execute complex financial plans. 
Moreover, acquiring such knowledge is likely to come at a cost. In our prior work (Lusardi, Michaud and Mitchell; 
hereafter LMM, forthcoming), we built and calibrated a stochastic life cycle model featuring uncertainty in income, 
longevity, capital market returns, and medical expenditures; that study also incorporated an endogenous knowledge 
accumulation process and a sophisticated saving technology. In the model, financial knowledge provided consumers with 
access to sophisticated financial products that boosted their expected return on financial assets. Naturally, those seeking 
to transfer resources over time by saving benefited most from financial knowledge.

The contribution of the present paper is to show how our stochastic life cycle model incorporating endogenous 
knowledge accumulation may be used to help evaluate financial literacy programs. Specifically, since knowledge is at 
the core of the model, the approach permits us to evaluate how financial education policies can influence saving and 
investment decisions. Several prior studies have sought to measure how financial literacy programs changes behavior, 
but few have the kind of experimental data to capture precisely what the impact of the interventions actually is. Using 
our model, we evaluate the effectiveness of efforts to build workplace financial education using econometric methods 
commonly used to estimate the effect of such programs. Inasmuch as all counterfactuals are known in the context of 
our model, this allows us to compare ”true” outcomes with estimates commonly generated by conventional program 
evaluation techniques. We show that it is frequently optimal for individuals to fail to invest in knowledge, as it is 
expensive to acquire and will not benefit everyone. Nevertheless, providing employees with financial knowledge can be 
valuable, depending on when it is offered and what reinforcement is provided. To this end, we use conventional program 
evaluation econometric techniques and simulated data to take into account selection and treatment effects: this allows 
us to measure how such programs shape wealth accumulation, financial knowledge, and participation in sophisticated 
assets (e.g., stocks) across heterogeneous consumers. Relatively more effective programs are those which embed follow-
up or are continued over time, so as to help employees retain knowledge acquired via the program. In this case, financial 
education delivered to employees around the age of 40 will optimally enhance savings at retirement by close to 10%.  
By contrast, programs that provide one-time education can generate short-term but few long-term effects. Finally,  
we evaluate how important it is to account for selection in program participation. We conclude that comparing 
participants and non participants, even in a difference-in-difference framework, can deliver misleading estimates of 
program effectiveness.

The paper has several parts. First, we briefly summarize prior studies, and next, we describe our model and outline 
our calibration approach. We then present a series of scenarios where we evaluate the simulated impacts of alternative 
financial education programs. In turn, we use the resulting datasets to examine various econometric models 
conventionally used to evaluate such programs. The paper concludes with a short discussion of the insights that  
policy and the finance and pension industry can gain from this work.
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2 PRIOR LITERATURE

In the wake of the financial crisis and ensuing Great Recession, interest has burgeoned in programs seeking to enhance 
financial literacy. For instance, the Organisation for Economic Co-operation and Development (OECD) has published 
a long list of reports on the importance of financial literacy and financial education programs. Several education 
programs in the U.S. focus on educational interventions for young people before they enter the labor market (Mandell, 
2008; Walstad, Rebeck, and MacDonald, 2010; Richardson and Seligman, 2014), while others examine programs offered 
to working-age adults, often by employers who seek to enhance employees’ appreciation of and investment in their 
workplace-based financial literacy education (e.g., Bernheim and Garrett, 2003; Clark, d’Ambrosio, McDermed, and 
Sawant, 2006; Lusardi, Keller, and Keller, 2008; Clark, Morrill, and Allen, 2012).

Despite the widespread popularity of such programs in the U.S. and elsewhere, our recent literature review (Lusardi 
and Mitchell, 2014) as well as Collins and O’Rourke (2010) argued that relatively little could be learned from most of the 
existing evaluations to date. This is because analysts have typically not followed the protocol required by ‘gold standard’ 
randomized controlled trials, enabling researchers to extrapolate from observed results. More specifically, a good 
evaluation will compare outcomes for a randomly selected ‘treatment’ versus ’control’ group, where the former will be 
exposed to a well-defined financial literacy program, while the latter will not (Imbens and Woolridge, 2009; Imbens, 2010). 
To this end, the modern program evaluation literature has identified three commonly-used metrics for such comparisons: 
an Intent to Treat (ITT) measure, an Average Treatment Effect on the Treated (ATET) measure, and a Local Average 
Treatment (LATE) measure. In our context, the ITT compares outcomes of those who were versus were not offered the 
program, irrespective of whether and which people actually elected the program when offered. The ATET measures 
the effect for the treated, not the average effect of moving someone into treatment, and hence it is often the only way to 
estimate program effects when selection is present; that is, one may not be able to evaluate a program’s average treatment 
effect when those who do participate endogenously differ from those who do not.1 Finally, the LATE measure, as defined 
by Angrist and Imbens (1994), captures the effect of the program for those who would participate in the program only 
if it was offered.2 Randomization of eligibility is a key ingredient for the recovery of LATE by instrumental variables 
regression.

In the context of financial education programs, some authors seeking to evaluate the impact of the programs have 
estimated ITT effects by comparing outcomes for people who were and were not exposed to the programs, given the 
option to undertake them. Good examples include studies of programs mandating high school financial literacy programs 
at different times across states (c.f., Bernheim, Garrett, and Maki, 2001; Bayer, Bernheim, and Sholz, 2009). Yet other 
researchers have estimated the effect of participating in a program which may include both treatment and selection 
effects; numerous examples are cited in Lusardi and Mitchell (2014). And finally, several researchers have sought to 
estimate program effectiveness using instrumental variables estimation, seeking to control on potential unobserved 
factors driving program participation and thus recover the LATE (Lusardi and Mitchell, 2014). Our general conclusion, 
however, is that much remains to be learned about how financial education affects key outcomes of interest. Without a 
well-defined control group selected via randomized assignment, it is typically difficult to measure the effect of financial 
education programs, since assumptions needed to estimate what program adopters would have done in the absence of the 
program (the counterfactual) are probably too strong.

To remedy this problem, we show below how we can use our model (LMM, forthcoming) to help clarify what can happen 
when a financial education program evaluation lacks a guiding theoretical framework. Most importantly, given individual 
heterogeneity and the costs and benefits of financial literacy, not everyone will gain from financial education. Accordingly, 
one should not expect a 100% participation rate in every financial education program. Moreover, according to our model, 
financial education programs may not always boost savings, and in fact they may not increase savings at all for some. 

1 In some cases, however, if a proper counterfactual can be identified, the average treatment effect can be estimated.

2 In a randomized control trial with one-sided non-compliance (individuals not assigned to treatment cannot receive it), the LATE estimate may coincide  
 with the ATET effect.
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Therefore it is inaccurate to conclude that lack of saving means that financial education is ineffective. Instead, lack of 
saving can actually be optimal behavior for some, and financial education would not be expected to change that behavior. 
In this respect, our framework helps explain who is likely to participate in such programs, what behavioral outcomes can 
result, and whether lack of impact is proof of program ineffectiveness.

3 THE MODEL AND CALIBRATION

3.1 Model

In what follows, we focus on workplace financial education programs of the sort most often offered by employers with 
defined contribution pensions.3 We consider employees who can elect to take advantage of such programs, which for the 
present purposes can be conceptualized as financial education of one year’s duration, delivered to employees who have not 
previously anticipated getting the offer.

We characterize each program in terms of three key parameters: an eligibility rule, a program cost, and the program’s 
effectiveness. We assume eligibility is assigned randomly to all employees of a given age, which we vary across 
experimental settings (more on this below). The impact of the financial education program is to reduce the employee’s 
cost of investing in knowledge. When a program is of high quality, it provides an incentive to acquire more knowledge, 
and individual employees will then decide whether to participate in the program. Costs matter as well: for instance, if the 
program were free, all workers will participate (or at best they will be indifferent). In order to capture the time/money 
costs of participating in the program, we model the participation cost for the program as a fixed factor; a more general 
framework could depend on income or education, but for the present purposes we keep it fixed.

The remainder of the model follows our prior work (LMM, forthcoming). Each individual is posited to select his 
consumption stream by maximizing expected discounted utility, where utility flows are discounted by β. Utility is 
assumed to be strictly concave in consumption and defined as ntu(ct/nt), where nt is an equivalence scale capturing 
(known) differences in consumption patterns across demographic groups (Scholz, Seshadri, and Khitatrakun, hereafter 
SSK, 2006). Each person’s faces a stochastic mortality risk (in addition to income and medical expenditure risk), and 
decisions are made from time t=0 (age 25) to age T (or as long as the individual is still alive; T=100 ). We examine people 
of three different education profiles (High School dropouts or <HS; High school graduates or HS; and those with at least 
some college, whom we call the College+). It is important to allow for heterogeneity in earnings because different groups 
receive different rewards from the progressive social insurance system, as described in LMM (forthcoming), and they face 
differential patterns of income, mortality, demographics, and out-of-pocket medical expenditure risk.

We also posit that the individual can invest his resources using two different investment technologies. One is  
a basic technology (for example, a checking account) which yields a certain (low) return                                 This 
represents the expected return to consumers without any financial know-how. The other is a more sophisticated 
technology which enables the consumer to receive a higher expected return which increases in financial knowledge f 
but comes at a cost. Specifically, the consumer must pay a direct cost (fee) to use the technology, cd, and he must also 
invest time and money in acquiring the knowledge to generate a sufficiently high excess return. Obtaining knowledge 
in the form of investment it thus has a cost of πi(it); we assume that this cost function is convex, reflecting decreasing 
returns in the production of knowledge. We remain agnostic about whether the average cost of investing in additional 
knowledge is higher or lower for more educated households; rather, we assume initially that all households face the 
same cost function. The rate of return to the sophisticated technology is stochastic, with an expected return that 
depends on the individual’s level of financial knowledge at the end of t,                 Thus the stochastic return function 
is log-normally distributed with log                                                                        is the standard deviation of a normally 
distributed shock      . The function r(ft+1) is increasing in ft+1 and it can be interpreted as an excess return function. 
Since the variance is assumed fixed, this also implies that individuals with higher financial knowledge obtain a higher 

3 See for instance, Bernheim and Garrett (2003); Bayer, Bernheim, and Sholz (2009); Clark, d’Ambrosio, McDermed, and Sawant (2006), and Clark, 
 Morrill, and Allen (2014).
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Sharpe ratio (higher risk-adjusted returns) on their investments. We denote by κt the fraction of wealth that the 
consumer invests in the sophisticated technology in period t.

Financial knowledge evolves according to the following equation:

where δ is a depreciation rate and i
t
 is gross investment. Depreciation exists both because consumer financial 

knowledge may decay, and also because some knowledge may become obsolete as new financial products are 
developed. Alternatively, financial education can be modeled as a permanent boost to knowledge if the depreciation 
rate were to become smaller or even zero.

The consumer is also eligible for a government transfer trt which guarantees a minimum consumption floor of cmin  

(as in Hubbard, Skinner, and Zeldes, hereafter HSZ 1995). This consumption floor can lower the expected variance of 
future consumption, which diminishes the precautionary motive for saving. Transfers are defined as trt = max 
(cmin − xt, 0) where cash on hand is:

where yt is net household income and oopt represents out-of-pocket medical expenditures. Both variables are 
stochastic over and above a deterministic trend. The sophisticated technology cannot be purchased if xt − cd < cmin  

(that is, the government will not pay for costs of obtaining the technology). End-of-period assets are given by:

where                           We impose a borrowing constraint on the model such that assets at+1 must 
be non-negative.

Following the literature, the individual’s net income (in logs) during his worklife is given by a deterministic component 
which depends on education, age, and an AR(1) stochastic process; retirement occurs at age 65. After retirement, the 
individual receives retirement income which is a function of pre-retirement income and a similar stochastic AR(1)  
process is assumed for post-retirement out-of-pocket medical expenditures.4 Finally, we allow for mortality risk at all  
ages, denoting pe,t as the one-year survival probability. Mortality risk is allowed to differ across education groups, as in  
LMM (forthcoming).

The state-space in period t is defined as                                                 where         and         are shocks to income and medical 
spending. The consumer’s decisions are given by (ct, it, κt). Accordingly, there are three continuous control variables, 
consumption, investment, and the share of investment in the technology, and a discrete one, participation. There 
are five state variables. We represent the problem as a series of Bellman equations such that, at each age, the value 
function has the following form:

We index variables by e where education differences are assumed to be present. The model is solved by backward 
recursion after discretizing the continuous state variables.5

4 Because these expenditures are generally low prior to retirement (and to save on computation time), we allow only for medical expenditure risk after  
 retirement (as in HSZ 1995)

5 For additional details on the solution method see LMM (forthcoming).
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3.2 CALIBRATION

To explore the impact of financial education on employee behavior, we assume that u(ct/nt) has a CRRA form with 
relative risk aversion σ for calibration purposes. Here we assume σ = 1.6, close to the value estimated by Attanasio, 
Banks, Meghir, and Weber (1999) using consumption data. Following SSK (2006), we define an equivalence scale that 
accounts for consumption differences in household size by education group and changes in demographics over the 
life cycle. Assuming that z(j, k) = (j + 0.7k)0.75 where j is the number of adults in the household and k is the number 
of children under age 18, we then define ne,t = z(je,t, ke,t)/z(2, 1) where je,t and ke,t are the average number of adults and 
children in the household by age and education group. We use data from the PSID to estimate the time series of 
average equivalence scales by education group. The age profile of those scales is hump-shaped and more amplified 
for less-educated households. For the base case, we use a discount factor of 0.96 (as in SSK, 2006, and Campbell and 
Viceira, 2002). The annual minimum consumption floor is set at $10,000 for a couple with one child.

Post-retirement income is defined to be a function of pre-retirement income, estimated from fixed-effect regressions 
analyzed separately by education level of net household income on age and a retirement dummy, as in LMM (forthcoming). 
This produces replacement rates of 0.75 for high school dropouts, 0.74 for high school graduates, and 0.63 for the College+, 
close to those based on total retirement income in the literature (e.g. Aon Consulting, 2008). Following retirement, we let 
income decline at the rate estimated in PSID data controlling for educational groups and cohort effects; that pattern is 
mostly due to changes in household composition (e.g. widowhood).

Turning to the financial market variables, we posit a safe asset return of      =2% (as in Campbell and Viceira, 2002). As 
the excess return function has not been previously established, we note that the range of risk-adjusted excess portfolio 
returns reported by von Gaudecker (2015), for example, is -0.017 (5th percentile) to 0.054 (95th percentile). Using Euler 
equations, Jappelli and Padula (2013) estimate that each point of financial literacy is associated with an expected increase 
in the return to saving from 0.2 to 1 percent. Clark, Lusardi, and Mitchell (forthcoming) use administrative data on 401(k) 
participants and find that there is about a one percentage point difference in returns between those who have the lowest 
financial literacy score and those that have the highest. We therefore use a linear function by setting rmax = r(fmax) = 0.04 
and rmin = r(fmin) = 0 where 0.04 is chosen to match the equity premium used in the portfolio literature. Below, we choose 
a convex cost function for investing in financial knowledge, which therefore embodies decreasing returns to producing 
knowledge. We set σε = 0.16 in the simulations (Campbell and Viceira, 2002).6

Estimating the price of acquiring financial knowledge is difficult, as little is known regarding inputs to the production 
process (time and expenditures on financial services), along with investments in, as opposed to, the stock of financial 
knowledge. As in LMM (forthcoming), we model the process using the function π(it) = 50it1.75 , a form that posits that 
the first units of knowledge are inexpensive, while marginal costs rise thereafter. To parametrize the participation 
cost for the sophisticated technology (cd), we use the median estimate of $750 (in $2004), following Vissing-Jorgensen 
(2003). We also require an estimate of the depreciation factor for financial knowledge, δ, though little is known on the 
size of this parameter. We use a value of 6 percent in our baseline calibration which is consistent with estimates of the 
depreciation of human capital.

Given this calibration, we can find optimal consumption, financial knowledge investment, and technology participation at 
each point in the state-space and at each age. Having done so, we then use our decision rules to simulate 2,500 individuals 
moving through their life cycles. We draw income, out-of-pocket medical expenditure, and rate of return shocks, and we 
use these to simulate the life cycle paths of all consumers. These consumers are given the initial conditions for education, 
earnings, and assets derived from the PSID for individuals age 25-30. We initialize financial knowledge at the lowest level 
(0). A list of the baseline parameters and their values is provided in the Appendix.

6 For information on how we estimate income and medical expenditure processes as well as mortality risk by education, see LMM (forthcoming). 
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4 SIMULATING THE IMPACT OF FINANCIAL EDUCATION PROGRAMS

4.1 The Programs

Given the model described above and the parameters of interest, we can evaluate the impact of employer-provided 
financial education programs on a variety of outcomes, including whether and which employees elect to participate, 
how much they invest in financial knowledge, their use of the sophisticated technology to invest, and how their 
lifetime consumption and utility levels change. We let eligibility for a particular financial education program offered 
in a given year be expressed using a binary variable dit, and in what follows we assume eligibility is assigned 
randomly to all employees of that given age (which we vary across experimental settings). We model the financial 
education program as reducing the employee’s cost of investing in knowledge. We expressed πp(it) =    π(it) , where     
    < 1 captures the efficiency of the program. If the program is high quality, it provides an incentive to acquire more 
knowledge and more employees will then decide to participate in the program. Costs matter as well. For instance, if 
the program were free, all workers will participate (or be indifferent). In order to capture the fixed time and perhaps 
money costs of participating in the program, we define      as the participation cost for the program.

If the employee is eligible for a program, we define Vp(st) (p = 0, 1) as the value (indirect utility) of not participating 
versus participating, respectively. The individual participates if v(st) = V1(st) − V0(st) is greater than zero. We add a 
zero mean disturbance to this difference,                           Hence, participation is given by:

In order for         to have the correct scale, we fix σv to the standard deviation of the simulated utility differences 
(0.001).

The simulations to follow explore a number of different programs. First, program eligibility is a function of age, so we 
evaluate how results change depending on whether the program is provided to employees at age 30, 40, or 50. When a 
worker is of the targeted age, he is deemed to be eligible with probability 0.5. We also explore how program effectiveness 
affects outcomes, by varying    ∈ [0.1, 0.5]. Additionally, we vary the fixed cost of participating (i.e.,    ∈ [250, 500]). And 
in a final and very important case, we also allow for the program to affect knowledge depreciation. That is, we posit that 
the financial education program provides knowledge that does not depreciate over time. This last experiment captures 
the possibility that a program could provide employees with financial advisers who can be accessed over time or that the 
program is continued over time. A total of six illustrative scenarios is considered below.

4.2 Who Participates in Financial Education Programs?

To understand who participates and who does not in a workplace financial education program of the sort described here, 
we first explore employees’ participation patterns across various scenarios. Table 1 reports how participation rates in the 
program vary given (randomly assigned) employee eligibility, where it is clear that participation rates overall (last column) 
are generally below 100 percent. We emphasize that this is not a sign of program failure; rather, people must incur a cost 
when investing in knowledge, and knowledge depreciates with time. For both reasons, not everyone will partake of the 
opportunity to build knowledge. It is also worth noting that program participation rates rise depending when (at which 
age) program is offered. This is to be expected, since people tend to save most between the ages of 40 and 60; employees 
have little money to manage earlier in life. Furthermore, we find that program participation is higher for the better-
educated, due to the larger gain from investing in knowledge for those individuals. Conversely, the least-educated are less 
likely to partake of the program offering. As we showed in LMM (forthcoming), the uneducated optimally save less, both as 
a result of their greater reliance on the social safety net, and their shorter life expectancies. The final two rows of the table 
indicate how participation rates for a program offered at a given age, say age 40, vary depending on two factors: program 
efficiency, and the cost of participation. Logically enough, more efficient programs attract higher participation, whereas 
higher costs reduce participation.
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TABLE 1: PROGRAM PARTICIPATION

We report participation rates to the program among those eligible for a series of scenarios and for three education levels. 
Age refers to the time at which the program is implemented,     is the relative marginal cost of investing in knowledge in 
the program, and      is the fixed cost of participating in the program. 

age   less HS HS college total

30 .5 500 .2349 .3302 .4453 .3662

40 .5 500 .3571 .4428 .5287 .4677

50 .5 500 .3438 .5109 .5792 .517

40 .25 500 .4048 .5084 .6169 .5405

40 .25 250 .4762 .6004 .6877 .6206

40 .1 100 .6131 .7899 .8429 .7882

In Table 2, we summarize the baseline characteristics of those who elect to participate in a financial education program 
when offered, versus those who do not (conditional on being eligible at a given age). Results indicate that program 
participants have higher earnings, more initial knowledge, and more wealth, while nonparticipants are poorer, earn less, 
and have little financial knowledge at baseline. This selectiveness occurs regardless of the age at which the program 
is offered. Importantly, it implies that an average program effectiveness measure which assumes that program and 
nonparticipants could benefit as much as participants will likely be biased.

TABLE 2: CHARACTERISTICS OF PARTICIPANTS AND NON PARTICIPANTS

We report means of baseline characteristics (income, financial knowledge, and wealth) for participants (p) and non 
participants (np). Age refers to the time at which the program is implemented,      is the relative marginal cost of  
investing in knowledge in the program, and      is the fixed cost of participating in the program.

age   income (np) fin (np) wealth (np) income (p) fin (p) wealth (p)

30 .5 500 34182 2.577 18742 55559 12.67 52396

40 .5 500 39939 13.86 35747 69325 43.46 111863

50 .5 500 49104 36.79 143971 66180 61.48 189600

40 .25 500 36277 10.31 27705 68482 42.49 108452

40 .25 250 36171 10.04 29141 64388 38.5 97148

40 .1 100 32171 9.837 34501 59463 32.5 81246

The fact that those who optimally elect to undertake the financial education program differ systematically from those 
who do not underscores the fact that a careful program evaluation must take into account the process by which people 
endogenously elect into the program. That is, it would be misleading to compare outcomes for program participants 
versus nonparticipants, since each group has different reasons for their behavior. Moreover, any evaluation program that 
cannot carefully control the sample’s baseline characteristics will be subject to such selection bias. Of course some of these 
characteristics – e.g., financial knowledge – may be difficult to measure precisely. Nevertheless, unless randomization is 
available, modeling the selection process is critical.

4.3 The Effect of Financial Education Programs over the Life Cycle

A useful aspect of our simulation approach is that the same simulated respondents are observed in different experimental 
settings, as they are, in turn, offered different financial education programs. Accordingly, we may compare life cycle 
investment, wealth, and saving profiles for the same individuals, along with information about whether they did or did not 
optimally take part in each program.
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Figures 1 to 6 report results, under six different financial education settings, of average profiles of investment in 
knowledge, stock of knowledge, changes in wealth (in percent), and the share of wealth invested in the sophisticated 
technology. Specifically, Figures 1-3 analyze how results change when the program is offered to a worker at age 30, 40, or 
50. Figure 4 reports results for a program offered to a 40-year old employee with an enhanced efficiency parameter, and 
in Figure 5 we lower the fixed cost of knowledge (shown in the same order as in Tables 1 and 2). Figure 6 illustrates how 
results change when financial knowledge depreciation is shut down, as for instance when an employer may maintain the 
employee’s financial sophistication post-program via continued monitoring.

FIGURE 1: EFFECTS OF THE FINANCIAL EDUCATION PROGRAM OVER THE LIFE-CYCLE

Intervention at age 30 with      = 0.5 and      = 500. We plot the average age profile of investment in knowledge, stock of 
knowledge, percent change in wealth, and the share of wealth invested in sophisticated products by participation status. 
For those who participated, we also plot the age profile had they not participated in the program.
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FIGURE 2: EFFECTS OF THE FINANCIAL EDUCATION PROGRAMS OVER THE LIFE-CYCLE

Intervention at age 40 with     = 0.5 and      = 500. We plot the average age profile of investment in knowledge, stock of 
knowledge, percent change in wealth, and the share of wealth invested in sophisticated products by participation status. 
For those who participated, we also plot the age profile had they not participated in the program.

FIGURE 3: EFFECTS OF THE FINANCIAL EDUCATION PROGRAMS OVER THE LIFE-CYCLE

Intervention at age 50 with     = 0.5 and      = 500. We plot the average age profile of investment in knowledge, stock of 
knowledge, percent change in wealth, and the share of wealth invested in sophisticated products by participation status. 
For those who participated, we also plot the age profile had they not participated in the program.
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FIGURE 4: EFFECTS OF THE FINANCIAL EDUCATION PROGRAMS OVER THE LIFE-CYCLE

Intervention at age 40 with      = 0.25 and      = 500. We plot the average age profile of investment in knowledge, stock of 
knowledge, percent change in wealth, and the share of wealth invested in sophisticated products by participation status. 
For those who participated, we also plot the age profile had they not participated in the program.

FIGURE 5: EFFECTS OF THE FINANCIAL EDUCATION PROGRAM OVER THE LIFE-CYCLE

Intervention at age 40 with      = 0.25 and      = 250. We plot the average age profile of investment in knowledge, stock of 
knowledge, percent change in wealth and the share of wealth invested in sophisticated products by participation status. 
For those who participated, we also plot the age profile had they not participated in the program.
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FIGURE 6: EFFECTS OF THE FINANCIAL EDUCATION PROGRAM OVER THE LIFE-CYCLE

Intervention at age 40 with      = 0.1 and      = 100 and no depreciation of knowledge among participants to the program. We 
plot the average age profile of investment in knowledge, stock of knowledge, percent change in wealth, and the share of 
wealth invested in sophisticated products by participation status. For those who participated, we also plot the age profile 
had they not participated in the program. 

A comparison of the first three Figures shows how results change when we vary the age at which the program is 
implemented. In each case, the upper left-hand panel depicts the impact on investment in financial knowledge, while 
the impact of the program on the stock of financial knowledge appears in the upper right-hand panel. In the lower left, 
we report the percentage change in wealth, and on the lower right, the share of the population using the sophisticated 
investment technology. Each panel includes three lines: the solid line refers to non-enrolled but eligible participants; the 
dashed line refers to enrolled participants; and the dotted line indicates how participants would have behaved without the 
program being introduced – a true counterfactual for those who did enroll when they could.

Figure 1 shows what happens with the program is made available to age 30 employees. Those who participate in the 
program do invest substantially in financial knowledge; this translates into a higher stock of financial knowledge 
compared to their own (no-program) counterfactual. We also see that those who participate in the program cut back on 
their investment after the program expires. Along with depreciation in financial knowledge, this leads to a dampening 
of the program’s effect when it is over. Nevertheless, after the initial ramp-up in financial knowledge, the marginal effect 
on behavior compared to the proper counterfactual is quite small. Conversely, we see that those who do invest in the 
financial knowledge program are markedly different from those who do not. In other words, both financial knowledge 
and sophisticated investment profiles are much higher compared to employees who optimally elect not to participate, 
underscoring the sample selection concern made earlier. In fact, if one were to compare program participants and 
nonparticipants, one would (erroneously) conclude that the program had an enormous impact on the stock of financial 
knowledge, producing a 20 percentage point advantage for participants. Yet the true counterfactual shows that the net 
effect of a one-year program offered at age 30 is quite small, particularly by the time the worker attains age 65. Results are 
similar across Figures 1-3, though when the program is implemented on older versus younger workers, the consequences 
appear slightly larger.

Somewhat larger program effects are evident in Figures 4 and 5. When the program offered becomes more efficacious 
for a 40-year old employee (Figures 2 versus 4), the employee experiences a much larger bump-up in knowledge which 
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persists for some time, and savings rise detectably. Similar results obtain when the cost of knowledge is reduced (Figure 2 
versus 5). Here again, investment in knowledge rises and some persistence in higher savings can be detected.

A much larger and longer-term impact results from shutting down the knowledge depreciation parameter, confirmed by 
a comparison of Figures 2 and 6. The 40-year old employee offered access to a financial education program whose effects 
do not decay will average three times more investment in knowledge, which in turn boosts his saving substantially. This 
effect persists until retirement, underscoring the long-term effect of not only building the knowledge, but also extending it 
throughout time. In other words, a one-time financial education program may have little effect, as expected, but the long 
term effects of a persistent financial education program can be sizable.

5 EVALUATING FINANCIAL EDUCATION PROGRAMS

Next we use our simulated data to investigate the effect of the programs of interest using the different metrics employed 
in the financial education literature, as described above. We also evaluate program effectiveness on welfare, measured by 
changes in lifetime consumption and utility.

5.1 Long-Term Effects

Frequently, empirical researchers may not know when individuals in any given survey may have been exposed to or 
offered some sort of programs. In the present case, for instance, an employee may not recall whether his employer ever 
offered a financial education program and if so, when. Nevertheless, in some cases the econometrician may be able to 
observe wealth at some particular age (e.g., retirement), accompanied with an indicator of whether the person had ever 
been exposed to such a program earlier in life.7 This can allow a determination of how offering an educational program 
affects outcomes of interest. In other cases, one might know which employees elected to take a program, permitting a 
comparison of outcomes between those who participated and those who did not. Rarely are both available, in practice, and 
the different outcomes are not directly comparable unless, as shown above, strong assumptions hold about the selection 
process into the program.

Results in Table 3 illustrate how results differ in our simulated setting where we can measure each of the key employee 
subgroups. For the six scenarios described earlier, we present four columns of retirement wealth values. The first column 
summarizes wealth levels for participants who elected to take the program when offered. The second column reports 
counterfactual wealth for the same people if the program had never been offered. The third column shows wealth levels 
for nonparticipants – those offered but who declined to participate – and the final column summarizes average wealth for 
those never offered the program. As before, each row represents a different policy experiment, with a program offered at 
age 30, 40, or 50 (first three rows), or at age 40 and three sets of other parameters comparable with those developed in 
Figures 1-5.

7 For instance the Health and Retirement Study has asked older individuals if their employers had offered them workplace-based financial education  
 programs (Lusardi, 2004).
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TABLE 3: WEALTH AT RETIREMENT BY GROUPS

We report mean wealth at retirement (age 65) for those who participate in the program, mean wealth for those who 
participate had they not participated (counterfactual), non-participants among those eligible and finally, those not eligible. 
Age refers to the time at which the program is implemented,     is the relative marginal cost of investing in knowledge in 
the program, and     is the fixed cost of participating in the program.

age   participants counterfactual non-participant non-eligible

30 .5 500 524271 522186 298979 392069

40 .5 500 519852 517146 253147 395314

50 .5 500 442676 440577 312325 394461

40 .25 500 515385 508452 220050 395314

40 .25 250 478872 472381 221023 395314

40 .1 100 467371 428874 187233 395314

Turning to the first row of that Table, program participants held mean wealth at retirement of $524,271. Had they not 
participated in the program, the same people’s mean wealth would have been about 1% lower (and the difference is 
statistically insignificant). This is the properly-measured program effect on those who participated, consistent with  
Figure 1. In other words, the program did boost both financial knowledge and wealth at the time the employees were 
offered the program, but by retirement, the effect virtually disappeared.

In the real world, of course, we typically cannot observe the ideal counterfactual; instead, we must find ways to identify 
a counterfactual and therefore the average effect of the program on the treated. If one could reasonably assume that 
program participation were independent of wealth, then nonparticipants could be used to measure the counterfactual: the 
estimated program effect would be to raise retirement wealth by 75% ($225,292/$298,979).

These numbers would lead one to conclude that the program was extremely effective in boosting saving; however, as 
demonstrated earlier, this is a severely upward-biased metric because participation is correlated with wealth at baseline. 
Alternatively, we could investigate the effect of offering the program without conditioning on those who participated. Since 
program eligibility is random in our simulation, everyone who was eligible to elect the program comprises the ITT group. 
From Table 1, we know that 36% of those offered the program participated, which when combined with data in Table 3, 
yields an average wealth level of $381,480 for the eligible, versus $392,069 among the ineligible. Surprisingly, then, by this 
metric, offering the program decreases average retirement wealth by a statistically insignificant 3% (-$10,589/$381,480).

We can do better by recalling that program eligibility is random in our scenarios. Accordingly, we can recover the effect of 
the program on participants by comparing program participants and non-participants. To do so, Imbens and Angris (1994) 
suggest using the Wald estimator:

where wi,65 is wealth of respondent i at age 65, di denotes eligibility, and pi participation. The expectation operator is 
E[] . Under certain assumptions, Imbens and Angrist (1994) show that this Local Average Treatment Effect (LATE) 
effectively captures the effect for a group of individuals who comply with the treatment being offered. Since the 
ineligible cannot participate,                                  we have one-sided non-compliance and therefore the effect becomes:
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This delivers the average effect of the program on the treated, or the ATET (Imbens and Angrist, 1994). For the  
first scenario in Table 3, this yields a statistically insignificant change (-$10,589/0.36 = -$29,414), or a 7.4% drop, in 
percentage terms.

Continuing down the rows in Table 3, it is interesting to note that the largest bias generated by comparing participants 
and nonparticipants occurs when the program is offered to employees at age 40. At earlier ages, selection is less strong 
since participants and non-participants are more similar and wealth is lower. Later in life, however, the saving motive 
switches from precautionary to retirement preparation, and behavioral differences are exacerbated. After age 50, these 
differences again diminish. Since most financial education in the workplace occurs mid-career (around the age of 40), our 
model suggest that selection can be a major threat to the evaluation of such programs.

It is also of interest that the largest effects occur for the most efficient programs provided at low cost. For example, the next-
to-final row in Table 3 (where      = 0.25, and     = 250) shows that the true program effect slightly boosts retirement wealth 
by 1.3% ($6,491/ $472381 which is statistically insignificant). Comparing the ineligible with the eligible groups, we see 
an apparent negative impact of offering the program (by 3.1%, or -$12,361/395314). The Wald estimator of the effect for 
those who comply with the offer of the program yields an estimated 4.9 % effect of (-$19684/ $395314 and not statistically 
significant). In fact, the only statistically significant effect across all program scenarios evaluated is found in the final 
row of Table 3, where depreciation has been shut down. This program does increase retirement wealth substantially, 
by 9% (($467371 - $428874)/$428874), yet it is much smaller than the 1.5 times wealth increment that would result from 
(incorrectly) using the nonparticipant pool as the comparator group.

To refine these estimates, next we implement these identification strategies in a regression framework which allows us to 
control for observable differences in outcomes.

5.1.1 Intent-to-Treat

As noted above, the intent-to-treat measure in our setting compares outcomes of those who were program-eligible to those 
who were not, assuming that program eligibility is exogenous to outcomes. To test this with our simulated data,  
we implement the following regression which controls for education and average lifetime income:

Under random assignment, we have  

Table 4 reports for each of our six scenarios the point estimate of     along with its standard error. In five of the six cases, 
the program effects are small and statistically insignificant, ranging from -0.06 to 0.1236. This confirms the unconditional 
levels estimates we reported in Table 3. By contrast, the program effect is positive and statistically significant for the final 
experiment, where financial knowledge is preserved through time. The estimate suggests an effect of 30% with a standard 
error of 12%. Controlling for covariates yields an even larger ITT estimate.
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TABLE 4: EFFECT OF OFFERING FINANCIAL EDUCATION PROGRAM ON WEALTH AT RETIREMENT  
(INTENT-TO-TREAT)

We report for each program the intent-to-treat estimate of the program along with standard error. This estimate is 
obtained by regressing log wealth at retirement on eligibility for the program, and controls for education and average 
lifetime income.

age ITT se

30 .5 500 .1141 .1129

40 .5 500 .1081 .1128

50 .5 500  -.0279 .113

40 .25 500 .1223 .1127

40 .25 250 .1236 .1127

40 .1 100 .2907 .1116

5.1.2 OLS on Program Participation

Thus far, we have argued that, due to selection bias, comparisons of participants and nonparticipants do not identify 
the effect of the program on outcomes. But one might wonder whether this could be remedied by controlling for factors 
observed sometimes early in life, say at age 25. Since financial knowledge is zero at age 25, there are two exogenous 
outcomes on which we could condition: wealth at age 25, and average lifetime income (in addition to the education 
dummies). To evaluate this, we run the following OLS regression:

This delivers the average effect of the program on the treated, if                Table 5 reports the new point estimates of     
    along with their standard errors.

Results in Table 5 show that when a financial education program is offered early in life, such as at age 30, baseline controls 
can sufficiently correct for selection, since estimated effects are close to zero. After that, however, the controls and 
functional form are insufficient to control for biases imparted by endogenous selection. In other words, the estimated 
effect of participating in the program becomes large and statistically significant when the program is offered to older 
workers. This is mainly due to the fact that incentives to save and, thus, acquire knowledge are a function of the income, 
rather than simply its level.
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TABLE 5: EFFECT OF FINANCIAL EDUCATION PROGRAM PARTICIPATION ON WEALTH AT RETIREMENT (OLS)

We report for each program the estimate of the effect of the program along with standard error. This estimate is obtained 
by regressing log wealth at retirement on participation to the program and controls for education, average lifetime income 
and initial wealth (at age 25).

age OLS se

30 .5 500   -.0051 .1512

40 .5 500 .4073 .1367

50 .5 500 .672 .13

40 .25 500 .5023 .1302

40 .25 250 .4428 .1241

40 .1 100 .7365 .1146

5.1.3 Local Average Treatment Effects

The Wald estimator can also be implemented as an instrumental variables (IV) regression (Imbens and Angrist, 1994). In 
our case, the first-stage regression for participation is:

assuming that eligibility is independent of     . Results are reported in Table 6 along with standard errors. Our 
findings confirm that programs which do not affect depreciation have little effect on retirement-age wealth levels. 
Although the point estimates are generally positive, the standard errors are often large. Only in the final scenario where 
the average effect on the treated (true) is positive does the LATE estimator pick up the effect and does the estimate 
become statistically significant. Accordingly, this IV estimator is a proper estimator of the average treatment effect on the 
treated (ATET) when eligibility or assignment to treatment is random.

TABLE 6: EFFECT OF FINANCIAL EDUCATION PROGRAM PARTICIPATION ON WEALTH AT RETIREMENT (LATE-IV)

We report for each program the estimate of the local average treatment effect along with standard error. This estimate is 
obtained by instrumental variables regression of log wealth at retirement on participation in the program and controls for 
education and average lifetime income. The instrumental variable is eligibility for the program.

age LATE se

30 .5 500 .3102 .3069

40 .5 500 .2259 .235

50 .5 500  -.0539 .2183

40 .25 500 .2207 .2028

40 .25 250 .1964 .1786

40 .1 100 .3669 .1399
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5.2 Contemporaneous Effects

Several evaluations of financial education programs compare the same individuals prior to and after receiving the  
training. When the same is done for a control group, one can implement a difference-in-difference (DD) strategy of the 
following form:

for zit = (pit, dit). Identification of the average effect requires that                             The common-trend assumption 
imposes that, in the absence of the program, the average change in wealth of those who participate (zit = 1) would 
have been the same as for those not participating (zit = 0). We can estimate this equation using a fixed-effect 
regression using either pit or dit. As described above, estimates of    capture both the ATET and the ITT effects.

To implement this approach in our simulated data, we consider two periods: one year prior to the program, and five 
years after the program. Since we can directly compute the average effect of the program on those who participated 
(using the true counterfactual), we also report this estimate in column 4 of Table 7. We find that the true effect of 
the program on those who participate is generally small, except when the program is highly effective. Using non-
participants as the counterfactual (hence implementing DD with pit) yields generally large and positive effects. 
The key explanation for why these estimates are biased is that the common-trend assumption in fact does not hold 
for participants and non-participants. That is, participants in financial education programs in our scenario would save 
more in the absence of the programs, compared to non-participants. For this reason, using the trend on wealth of non-
participants as a counterfactual grossly overestimates the effect of the programs. Implementing DD with eligibility yields 
relatively smaller biases, compared to using participation.

TABLE 7: DIFFERENCE-IN-DIFFERENCE EFFECT OF FINANCIAL EDUCATION PROGRAM ON WEALTH

We report estimates of the effect of the financial education program on wealth (in percent) 5 years after the program, 
relative to one year prior to the program. This is done using 3 potential counterfactuals. The first uses outcomes of 
those treated had they not participated (average effect on the treated). The second and third columns use different 
counterfactuals. The second uses non participants (but eligible). The last column uses those not eligible.

age counterfactual non-participant non-eligible

30 .5 500  -.0193 .7243 .4537

40 .5 500   .0058 .304 .1558

50 .5 500    .0036   -.0165   .0096

40 .25 500   .0214 .394 .1825

40 .25 250   .0446 .288 .1265

40 .1 100 .1142 .4037 .17

6 DISCUSSION AND CONCLUSIONS

In previous research, we have demonstrated that important segments of the population are financially unsophisticated 
and do not understand simple interest, inflation, and risk diversification (Lusardi and Mitchell 2008, 2011a,b). We 
have also shown that it is actually optimal for many people to be unsophisticated, in that some people will rationally 
elect not to invest in knowledge as it is expensive to acquire and does not benefit everyone (LMM, forthcoming). The 
present paper goes farther by using our theoretical model to evaluate the impacts of well-specified financial education 
programs that could be offered by employers to workers of different ages. In particular, we use our stochastic life cycle 
model incorporating endogenous knowledge accumulation to evaluate six different financial literacy program scenarios. 
This is useful since no empirical studies have the kind of information needed to capture precisely what the impact of 
the interventions will be. In our case, we know all relevant counterfactuals to compare “true” outcomes with program 
effectiveness estimates generated by conventional econometric techniques.
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Our approach provides several important insights regarding financial education program evaluation. First, we show 
that low participation rates in such programs can be rational, once we recognize that improving financial literacy does 
not benefit everyone and acquiring knowledge is costly. In particular, the low-income and less-educated have less to gain 
from participating in such programs. For this reason, it is incorrect to conclude that financial education programs are 
not valued and “preach only to the converted.” Rather, the decision to invest in financial education depends on its costs 
and benefits, factors which differ across individuals. Second, our model emphasizes the role of self-selection in financial 
education, particularly at older ages. Accordingly, great care is required to rigorously evaluate the effectiveness of 
financial education in non-experimental settings, where self-selection tends to occur. Third, prior studies have taken too 
narrow a focus by overlooking the crucial role of knowledge retention – once the financial education is obtained. That 
is, financial education delivered to employees around the age of 40 can raise savings at retirement by close to 10%, if the 
knowledge gained can be maintained. Fourth, and relatedly, we show that short-term financial education programs are 
unlikely to dramatically alter saving, especially when offered to young people. They are more effective when targeted at 
peak saving years (e.g., post-age 40).

A final important lesson from our work is to point out that measures of financial education program effectiveness shape 
outcomes across heterogeneous individuals so that evaluators must build several key elements into the study design. 
First, it is essential to have accurate measures are of what information the program delivers and what sort of follow-up 
is provided. Second, the researcher must measure baseline features of the eligible sample including wealth, income, and 
financial literacy. Third, it is necessary to randomize eligibility for the treatment. And fourth, longer-term follow-up is 
crucial.
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APPENDIX

TABLE A.1: BASELINE PARAMETER VALUES

Baseline values are as follows: relative risk aversion (σ = 1.6), financial knowledge depreciation rate (δ = 0.06), 
investment production function (π(i) = 50i1.75), participation cost (cd = 750), discount factor (β = 0.96). The cost of 
investing in knowledge takes the form π(i) = π0i π1 . See text.  
 

Parameter Value

σ 1.6

β 0.96

r 0.02

r(fmax) 0.04

π0 50

π1 1.75

cd 750

δ 0.06

cmin 10,000


